ÍNDICE DE FRESCOR OCULAR: UM MODELO MATEMÁTICO BASEADO EM IMAGENS PARA AVALIAÇÃO NÃO DESTRUTIVA DA QUALIDADE DE Pangasius sp.

Authors

  • Jovan Louzeiro Silva IEMA Pleno Carutapera
  • Gabriel Nascimento Tavares IEMA Pleno Carutapera
  • Andrey Marcos Mendonça Ferreira IEMA Pleno Carutapera
  • Romário Costa Ribeiro IEMA Pleno Carutapera
  • Carlos Riedel Porto Carreiro Universidade Estadual do Maranhão
  • Ronan Corrêa Santos IEMA Pleno Carutapera
  • Diego Aurélio dos Santos Cunha IEMA Pleno Carutapera https://orcid.org/0000-0001-5414-602X

DOI:

https://doi.org/10.18817/repesca.v17i1.4386

Keywords:

OFI, Pangasius fish, Image analysis, Fish quality, Non-destructive method

Abstract

The assessment of fish freshness is essential to ensure product quality and food safety; however, traditional methods are often limited by subjectivity, high costs, and the need for laboratory infrastructure. In this context, this study aimed to develop and validate a non-destructive mathematical model, termed the Ocular Freshness Index (OFI), based on eye image analysis of Pangasius sp., to objectively evaluate fish freshness and quality during ice storage. Specimens were analyzed at three different time points: immediately after capture (ideal freshness), after 8 days (moderate freshness), and after 22 days of ice storage (poor freshness). Eye images were acquired under standardized conditions and processed using digital image analysis techniques to extract optical variables related to brightness, transparency, texture homogeneity, and specular reflectivity. These variables were integrated into a continuous mathematical model to generate the OFI. The results revealed measurable changes in ocular parameters as storage time increased, demonstrating the sensitivity of the index to post-mortem deterioration processes. The proposed method proved to be feasible, low-cost, and applicable under real commercialization conditions, representing a promising tool to complement traditional fish freshness assessment methods.

References

BANWARI, A., JOSHI, R., SENGAR, N., & DUTTA, M. (2022). Computer vision technique for freshness estimation from segmented eye of fish image. Ecol. Informatics, 69, 101602. https://doi.org/10.1016/j.ecoinf.2022.101602 DOI: https://doi.org/10.1016/j.ecoinf.2022.101602

BERNARDI, D., MÁRSICO, E., & FREITAS, M. (2013). Quality Index Method (QIM) to assess the freshness and shelf life of fish. Brazilian Archives of Biology and Technology, 56, 587-598. https://doi.org/10.1590/s1516-89132013000400009 DOI: https://doi.org/10.1590/S1516-89132013000400009

BERNARDO, Y., ROSARIO, D., DELGADO, I., & CONTE‐JUNIOR, C. (2020). Fish Quality Index Method: Principles, weaknesses, validation, and alternatives-A review.. Comprehensive reviews in food science and food safety, 19 5, 2657-2676. https://doi.org/10.1111/1541-4337.12600 DOI: https://doi.org/10.1111/1541-4337.12600

BERTINI, A., IACCHERI, E., MAGNANI, M., BADIANI, A., BONALDO, A., RAGNI, L., & BERARDINELLI, A. (2023). Nondestructive rainbow trout (Oncorhynchus mykiss) freshness estimation by using an affordable open-ended coaxial technique. Journal of food science. https://doi.org/10.1111/1750-3841.16584 DOI: https://doi.org/10.1111/1750-3841.16584

CHENG, J., SUN, D., ZENG, X., & LIU, D. (2015). Recent Advances in Methods and Techniques for Freshness Quality Determination and Evaluation of Fish and Fish Fillets: A Review. Critical Reviews in Food Science and Nutrition, 55, 1012 - 1225. https://doi.org/10.1080/10408398.2013.769934 DOI: https://doi.org/10.1080/10408398.2013.769934

DE SOUZA, M., DA NÓBREGA FURTUNATO, D., DE CÁSSIA VIEIRA CARDOSO, R., ARGOLO, S., SILVA, Í., & SANTOS, L. (2017). Evaluation of freshness of frozen seafood sold at the Municipal Market of São Francisco do Conde - BA. Boletim Do Instituto De Pesca, 39, 359-368. https://institutodepesca.org/index.php/bip/article/view/1002/982

DOS SANTOS CUNHA, D. A., COELHO, A. V., FERREIRA, L. K. S., SAMPAIO, A. P. R., BRAGA, J. C. C. M., DE JESUS, G. D. S., ... & JUNIOR, A. R. T. (2020). Método de Índice de Qualidade aplicado para o Pangasius bocourti (Sauvage, 1880)(Suriliformes; Pangasidae). Research, Society and Development, 9(10), e6449109032-e6449109032. https://doi.org/10.33448/rsd-v9i10.9032 DOI: https://doi.org/10.33448/rsd-v9i10.9032

DOS SANTOS CUNHA, D. A., COELHO, A. V., FERREIRA, L. K. S., DOS SANTOS, E. C. B., & JUNIOR, A. R. T. (2024). Características físicas e bioquímicas do filé de Pangasius bocourti cultivado em Bom Jardim, Estado do Maranhão, Brasil. Acta of Fisheries and Aquatic Resources, 12(2), 12-22. https://doi.org/10.46732/actafish.2024.12.2.12-22 DOI: https://doi.org/10.46732/actafish.2024.12.2.12-22

EKOJONO, E., HERMAN, A., & MUSTIKA, M. (2021). Identification of Freshness of Marine Fish Based on Image of Hue Saturation Value and Morphology. Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, 6(1), 40-48. https://doi.org/10.25139/inform.v6i1.3228 DOI: https://doi.org/10.25139/inform.v6i1.3228

ESTEVES, E., & ANÍBAL, J. (2020). Sensory evaluation of seafood freshness using the quality index method: A meta-analysis. International journal of food microbiology, 337, 108934. https://doi.org/10.1016/j.ijfoodmicro.2020.108934 DOI: https://doi.org/10.1016/j.ijfoodmicro.2020.108934

FONTES, M., ESTEVES, A., CALDEIRA, F., SARAIVA, C., VIEIRA-PINTO, M., & MARTINS, C. (2007). Estado de frescor e qualidade higiênica do pescado vendido numa cidade do interior de Portugal. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 59, 1308-1315. https://doi.org/10.1590/s0102-09352007000500031 DOI: https://doi.org/10.1590/S0102-09352007000500031

FREITAS, J., VAZ-PIRES, P., & CÂMARA, J. (2019). Freshness Assessment and Shelf-Life Prediction for Seriola dumerili from Aquaculture Based on the Quality Index Method. Molecules, 24(19), 3530. https://doi.org/10.3390/molecules24193530 DOI: https://doi.org/10.3390/molecules24193530

FREITAS, J., VAZ-PIRES, P., & CÂMARA, J. (2021). Quality Index Method for fish quality control: Understanding the applications, the appointed limits and the upcoming trends. Trends in Food Science & Technology, 111, 333-345. https://doi.org/10.1016/j.tifs.2021.03.011 DOI: https://doi.org/10.1016/j.tifs.2021.03.011

HARALICK, R. M.; SHANMUGAM, K.; DINSTEIN, I. (1973) Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 DOI: https://doi.org/10.1109/TSMC.1973.4309314

HOANG, P., TRINH, N., TRAN, V., & PHAN, T. (2025). Enhanced Fish Freshness Classification with Incremental Handcrafted Feature Fusion. ArXiv, abs/2510.17145. https://doi.org/10.48550/arxiv.2510.17145

HOSSAIN, M., SHIKHA, F., & YEASMIN, S. (2021). Changes in gel forming ability and protein solubility of pangasius (Pangasianodon hypophthalmus) muscle at different rigor stages during storage at room temperature (28 to 32°C) and in ice. Bangladesh Journal of Fisheries, 32(2), 313–322. https://doi.org/10.52168/bjf.2020.32.36 DOI: https://doi.org/10.52168/bjf.2020.32.36

HUANG, Y., LIU, Y., JIN, Z., CHENG, Q., QIAN, M., ZHU, B., & DONG, X. (2021). Sensory evaluation of fresh/frozen mackerel products: A review. Comprehensive reviews in food science and food safety, 20(4), 3504-3530. https://doi.org/10.1111/1541-4337.12776 DOI: https://doi.org/10.1111/1541-4337.12776

IACCHERI, E., CEVOLI, C., FRANCESCHELLI, L., TARTAGNI, M., RAGNI, L., & BERARDINELLI, A. (2022). Radio-frequency and optical techniques for evaluating anchovy freshness. Biosystems Engineering,.,;/ças 223(Part B) 159-168. https://doi.org/10.1016/j.biosystemseng.2021.12.024 DOI: https://doi.org/10.1016/j.biosystemseng.2021.12.024

IKASARI, D., & SURYANINGRUM, T. (2015). Quality changes of pangasius fillets during ice storage. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 10, 109-120. https://doi.org/10.15578/squalen.v10i3.134 DOI: https://doi.org/10.15578/squalen.v10i3.134

JEYAKUMARI, A., ROY, R., NINAN, G., & RENUKA, V. (2017). Effect of spice extracts on the biochemical, textural and sensory attributes of Pangasius (Psngasius hypophthalmus) chunks during ice storage. The Indian journal of nutrition and dietetics, 54, 149-160. https://doi.org/10.21048/ijnd.2017.54.2.15542 DOI: https://doi.org/10.21048/ijnd.2017.54.2.15542

LALABADI, H., SADEGHI, M., & MIREEI, S. (2020). Fish freshness categorization from eyes and gills color features using multi-class artificial neural network and support vector machines. Aquacultural Engineering, 90, 102076. https://doi.org/10.1016/j.aquaeng.2020.102076 DOI: https://doi.org/10.1016/j.aquaeng.2020.102076

MONTEIRO, M., MÁRSICO, E., & CONTE, C. (2017). Procedimentos ômicos aplicados em qualidade e segurança de pescado. Brazilian Journal of Veterinary Research and Animal Science, 54, 1-17. https://doi.org/10.11606/issn.1678-4456.bjvras.2017.114234 DOI: https://doi.org/10.11606/issn.1678-4456.bjvras.2017.114234

ÓLAFSDÓTTIR, G., MARTINSDÓTTIR, E., OEHLENSCHLÄGER, J., DALGAARD, P., JENSEN, B., UNDELAND, I., MACKIE, I., HENEHAN, G., NIELSEN, J., & NILSEN, H. (1997). Methods to evaluate fish freshness in research and industry. Trends in Food Science and Technology, 8, 258-265. https://doi.org/10.1016/s0924-2244(97)01049-2 DOI: https://doi.org/10.1016/S0924-2244(97)01049-2

OMWANGE, K., RIZA, D., SEN, N., SHIIGI, T., KURAMOTO, M., OGAWA, Y., KONDO, N., & SUZUKI, T. (2020). Fish freshness monitoring using UV-fluorescence imaging on Japanese dace (Tribolodon hakonensis) fisheye. Journal of Food Engineering, 287, 110111. https://doi.org/10.1016/j.jfoodeng.2020.110111 DOI: https://doi.org/10.1016/j.jfoodeng.2020.110111

PRABHAKAR, P., VATSA, S., SRIVASTAV, P., & PATHAK, S. (2020). A comprehensive review on freshness of fish and assessment: Analytical methods and recent innovations.. Food research international, 133, 109157. https://doi.org/10.1016/j.foodres.2020.109157 DOI: https://doi.org/10.1016/j.foodres.2020.109157

ROCCULI, P., CEVOLI, C., TAPPI, S., GENOVESE, J., URBINATI, E., PICONE, G., FABBRI, A., CAPOZZI, F., & ROSA, M. (2019). Freshness assessment of European hake (Merluccius merluccius) through the evaluation of eye chromatic and morphological characteristics.. Food research international, 115, 234-240. https://doi.org/10.1016/j.foodres.2018.08.091 DOI: https://doi.org/10.1016/j.foodres.2018.08.091

SHIKHA, F., HOSSAIN, M., & YESMIN, S. (2021). Changes in Physico-Chemical and Microbiological Parameters of Pangas (Pangasius pangasius) Muscle During Ice Storage. Journal of Environmental Science and Natural Resources, 12, 199-208. https://doi.org/10.3329/jesnr.v12i1-2.52037 DOI: https://doi.org/10.3329/jesnr.v12i1-2.52037

SRIKET, P., & LA-ONGNUAL, T. (2018). Quality Changes and Discoloration of Basa (Pangasius bocourti) Fillet during Frozen Storage. Journal of Chemistry. https://doi.org/10.1155/2018/5159080 DOI: https://doi.org/10.1155/2018/5159080

TAPPI, S., ROCCULI, P., CIAMPA, A., ROMANI, S., BALESTRA, F., CAPOZZI, F., & ROSA, D. (2017). Computer vision system (CVS): a powerful non-destructive technique for the assessment of red mullet (Mullus barbatus) freshness. European Food Research and Technology, 243, 2225-2233. https://doi.org/10.1007/s00217-017-2924-0 DOI: https://doi.org/10.1007/s00217-017-2924-0

WU, L., PU, H., & SUN, D. (2019). Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends in Food Science & Technology, 83, 259-273. https://doi.org/10.1016/j.tifs.2018.12.002 DOI: https://doi.org/10.1016/j.tifs.2018.12.002

YILDIZ, M., YASIN, E., & KOKLU, M. (2024). Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed mobile application. European Food Research and Technology, 250, 1919 - 1932. https://doi.org/10.1007/s00217-024-04493-0 DOI: https://doi.org/10.1007/s00217-024-04493-0

ZHANG, Z., SUN, Y., SANG, S., JIA, L., & OU, C. (2022). Emerging Approach for Fish Freshness Evaluation: Principle, Application and Challenges. Foods, 11(13), 1897. https://doi.org/10.3390/foods11131897 DOI: https://doi.org/10.3390/foods11131897

Published

2026-01-03

How to Cite

Silva, J. L., Tavares, G. N., Ferreira, A. M. M., Ribeiro, R. C., Carreiro, C. R. P., Santos, R. C., & Cunha, D. A. dos S. (2026). ÍNDICE DE FRESCOR OCULAR: UM MODELO MATEMÁTICO BASEADO EM IMAGENS PARA AVALIAÇÃO NÃO DESTRUTIVA DA QUALIDADE DE Pangasius sp . Revista Brasileira De Engenharia De Pesca, 17(1), 70–87. https://doi.org/10.18817/repesca.v17i1.4386

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.